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Basic physics of laser propagation in hollow waveguides

J. R. Davies and J. T. Mendonc¸a
Instituto Superior Te´cnico, GoLP, 1049-001 Lisboa, Portugal

~Received 3 November 1999; revised manuscript received 21 June 2000!

The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma
physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete
series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The
mathematical connection between this model and the solution of Maxwell’s equations for lossless propagation
in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained,
provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity
waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown inten-
sities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the
model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental
results.

PACS number~s!: 52.40.Nk, 42.79.Gn, 52.75.2d
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I. INTRODUCTION

Free electromagnetic waves of finite extent do not hav
unique direction of propagation; they diverge. Thus the
tensity of the wave falls and the forward group velocity
less than the speed of light. This is undesirable for a num
of laser-plasma applications, in particular the laser wakefi
accelerator@1#. To illustrate this, consider a wave propaga
ing perpendicular to the page. The electric and magn
fields are perpendicular to the direction of propagation,
we can draw the field lines on the page. As“•B50 the
magnetic field lines cannot have ends, which if they are fin
means they must form closed loops. The electric field lin
must then be drawn perpendicular to the magnetic field lin
inevitably giving converging~diverging! lines. This means
there must be at least two charges on the page~depending on
how convoluted the loops are that you drew!, which in prac-
tice means two or more guides running in the direction of
wave. It is not a free electromagnetic wave. This is the s
ation in waveguides such as coaxial cables and two w
lines, which are not suitable for guiding intense laser bea
If we cannot have the field running between two or mo
conductors, we have to bend the field lines out of the pa
which then means that propagation is not entirely perp
dicular to the page. In a free electromagnetic wave“•E
50, and both the electric and the magnetic field lines m
form closed loops. This follows directly from the wave equ
tion, which does not give propagation without gradients, a
vice versa. It also illustrates another important feature
finite electromagnetic waves: you cannot define a unique
larization. In particular, you cannot have a wave which
entirelys polarized with respect to a given surface, that is
electric field everywhere parallel to the surface, unless
intensity is uniform over the entire surface. The only w
which remains to prevent the wave from continually dive
ing is to reflect the diverging components between the s
faces of a hollow waveguide. This will maintain the inte
sity, barring losses, but will still give a forward grou
velocity less than the speed of light. This has been ex
sively studied with microwaves, and there are numer
PRE 621063-651X/2000/62~5!/7168~13!/$15.00
a
-

er
ld

ic
o

e
s
s,

e
-
e
s.

e,
-

st
-
d
f

o-

n
e

-
r-

n-
s

books on the subject, e.g., Elliot@2#. At the other extreme in
wavelength, hollow waveguides have been used for guid
x rays; for a recent example and further references, see
@3#. Numerous papers on the guiding of low-intensity las
pulses in hollow waveguides have been published. T
have been used, for instance, in achieving ultrashort la
pulses@4#, and, at intensities of;1014 W cm22, the genera-
tion of gas harmonics by a short pulse laser was studie
glass capillaries@5#. Recently, this subject has become
interest in the field of laser-plasma physics, with the pub
cation of a number of experimental results on the guiding
high intensity, short pulse laser beams in glass capilla
@6–8#. This subject has been studied before in laser-plas
physics, but with long pulse lasers, using gold capillaries@9#.
Most of these results were interpreted using a simple g
metrical model of rays reflecting between the guide wa
considering either one, average, ray@6,7# or a continuous
series@9#, and assumng that all rays cross the axis. Dorch
et al. @8# based their work on the theoretical results of Ma
catili and Schmeltzer@10#, which are also referred to in man
other papers@4–8#; however, as we will show in Sec. VIII
due to the approximations used there are a number of im
tant errors in these results. Though this subject was ex
sively studied in the context of microwaves, the empha
there is on conducting waveguides, which have a sign
cantly different behavior at microwave frequencies than
optical frequencies. The intensity is also not normally co
sidered in this context. To study plasma formation at
guide walls and the breakdown of dielectric waveguides
incident intensity is required. Thus there is a need to
evaluate this theory in the context of laser-plasma physics
Sec. II we start with a simple physical picture of waves
flecting between the guide walls, showing that there is
discrete series of propagating modes in a hollow wavegu
and obtaining the dispersion relation. This illustrates the g
metrical model and its limitations. We then derive the loss
in terms of a given reflectivity, the approach used in Re
@6,7,9#. In Sec. III we consider cylindrical waveguides, giv
ing the solution of Maxwell’s equations in a cylinder assu
ing a homogeneous, isotropic, and linear internal mediu
7168 ©2000 The American Physical Society
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PRE 62 7169BASIC PHYSICS OF LASER PROPAGATION IN . . .
We then consider two cases for the guide medium: in Sec
we assume that there is total reflection from the guide w
and in Sec. V that the guide is also a homogeneous, iso
pic, and linear medium. The first case is of particular intere
as we are interested in low loss propagation, and the exp
ments we wish to analyze@6–8# inferred high reflectivities.
Assuming there is no energy dissipation in the internal m
dium, it gives a lossless solution, and we analyze this
detail. We show the mathematical connection between it
the physical model of wave reflection between the gu
walls, giving the incident intensity at the wall. In Sec. V, f
a guide with infinitely thick walls, we show that, with losse
to the guide walls, there are only rotationally symmet
modes, and give their dispersion relation. In terms of refl
tion between the guide walls this can be easily understood
without rotational symmetry the effective angle of inciden
and polarization varies around the wall, and hence the lo
vary. Thus nonrotationally symmetric modes distort as th
propagate. The dispersion relation for rotationally symme
modes can, in general, only be solved numerically. In S
VI we propose a simple model for low loss propagatio
using the lossless solution of Sec. IV to give details of
incident wave at the guide wall and a given reflectivity,
outlined in Sec. II. For nonrotationally symmetric modes
obtain a loss term averaged around the guide wall. T
model requires the reflectivity to be a given function of an
of incidence and polarization, and to be close to 1, and
guide radius to be much greater than the wavelength. T
any theoretical or experimental results for the reflectivity c
be used, as deemed appropriate. It represents a generaliz
of the procedure used in microwave applications@2#, where
losses to a conducting waveguide are calculated from
surface currents, given by the lossless solution, and the
face impedance of a plane surface. In using the reflectivit
place of the surface impedance, we greatly extend the ap
cability of the model. As an example, in Sec. VII, we u
Fresnel’s equations to derive loss terms for ideal dielec
and, in the classical skin effect regime, metal, or plas
waveguides. We show that this approach gives the same
sults for the rotationally symmetric modes as an approxim
solution of the dispersion relation given in Sec. V. For co
ductors we show that, for the same approximations, we
tain the same results as given for microwaves in Ref.@2#.
The issue of dielectric breakdown is considered, and a r
tion between known breakdown thresholds and that in a
electric waveguide is given. In Sec. VIII we compare o
results with those of Marcatili and Schmeltzer, and point
the errors in their approximations. In Sec. IX we show h
the theory can be applied in interpreting experimental resu
Finally, Sec. X gives conclusions.

II. BASIC CONSIDERATIONS

The wave vector of waves reflecting between the gu
walls can be written ask5(kz ;6k'), wherekz is the wave
number along the waveguide axis, andk' is the wave vector
perpendicular to it. As we saw in Sec. I, there does not e
a solution withk'50. The perpendicular wave number giv
an effective perpendicular wavelength of 2p/k', which must
fit the waveguide cross section. Thus only specific value
k' are allowed, giving a discrete set of propagating mod
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As a simple illustration, for a parallel plate waveguide the
must be a half integer number of wavelengths between
plates, givingk'5np/L, wheren is an integer mode numbe
and L the separation between the plates. This can easily
extended to a waveguide with rectangular cross sect
wherek' has two such components. For a cylindrical wav
guide the answer is not so obvious, as there is a continu
range of path lengths possible across a circle, but it is c
that the answer should be similar in form, depending on
teger, aziumthal, and radial mode numbers and the recipr
of the radius. This shows the limitation of the geometric
model ~rays reflecting between the walls!; in reality only
certain angles are allowed. Waves with a given value ofk'

crossing the guide in opposite directions will interfere to gi
modes propagating in the axial direction, with wave numb
kz , which we will call b, to be consistent with the notatio
we will adopt below. We must havek.k' , sok' represents
a cutoff for propagation and we will relabel itkc . This gives
us the mode dispersion relation

b25k22kc
2 . ~1!

From this dispersion relation, or from simple geometric
arguments, we obtain the group and phase velocities

vg5cA12kc
2/k2, ~2!

vp5
c

A12kc
2/k2

. ~3!

These equations are valid in general for lossless propaga
kc being determined by the guide’s cross section. To inclu
losses, the dispersion relation has to be generalized to c
plex values. Losses will result from energy dissipation in t
internal medium and, in the context of this model, from i
complete reflection from the guide wall. The latter can
characterized in terms of a reflectivityR. If this is constant
and the number of reflections per unit length,N, is constant,
then the intensity of a mode will be given by

I ~z!5I ~0!RNz. ~4!

N can be determined from simple geometrical consid
ations. For our example of a parallel plate waveguide,N
5np/bL2. In general the reflectivity is a function of angl
of incidence, polarization, and intensity. However, if it is
function of intensity this simple model breaks down, as t
reflectivity would change at each reflection. This is the a
proach used to describe the losses in Refs.@6,7,9#, where
they used just such a two-dimensional model,L in this case
being the diameter of the cylinder~capillary!. Thus they as-
sumed that all rays cross the axis, but in general there is
reason to assume that this is the case. These simple co
erations also show that to achieve the goals of a high gr
velocity and low losses we requirek@kc . This requires that
the linear dimensions of the waveguide cross section
much greater than the laser wavelength. This is inconsis
with tight focusing, requiring high laser powers to achie
high intensities. To achieve low losses,s-polarized waves
would also be desirable, as in general the reflectivity is mu
higher@11#. In three dimensions, this can only be achieved
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7170 PRE 62J. R. DAVIES AND J. T. MENDONC¸ A
a cylindrical waveguide, with a rotationally symmetric inte
sity, giving a uniform intensity over the surface. This is b
cause the intensity cannot be uniform in both transverse
ordinates, as this would imply propagation only in the ax
direction. In a rectangular waveguide, one might imag
that ans-polarized wave reflecting between only one pair
surfaces would have low losses, as it is not reflecting
tween the other pair. However, in general, ap-polarized
wave traveling parallel to a surface does not have zero
sorption @2,11#, as this maximizes the electric field perpe
dicular to the surface. This problem is removed if you
move one set of walls, i.e., in two dimensions. This geome
has been used to achieve controlled, monomode guiding
rays @3#, and was also used by Sto¨ckl and Tsakiris@9# to
observe plasma formation in a waveguide. We will now co
centrate on the case of a cylindical waveguide, of inter
radius a. These are the natural choices for guiding a la
beam, and were used in the experiments we wish to exam

III. WAVES INSIDE A CYLINDER

The general problem is not solved; the interaction of
electromagnetic wave~e.g., a laser! with a surface~e.g., a
plasma! is still an active area of research, and a cylindric
surface introduces still further complications. However, fo
homogeneous, isotropic, and linear internal medium,
scribed by a complex permittivity and permeability« andm,
solutions to Maxwell’s equations are known. This will b
applicable to evacuated waveguides; to waveguides fi
with a uniform, very underdense plasma~for which any
changes in the plasma conditions will cause a neglig
variation in« andm); and to most materials at a low enoug
laser intensity.

The fields are assumed to be of the forms

E5AÊ~r ,u!ei (vt2gz), ~5!

B5Am«AB̂~r ,u!ei (vt2gz), ~6!

whereA is a constant~possibly complex! amplitude,v is the
laser angular frequency, and

g5b2 ia, ~7!

where b is the axial wave number anda the loss term.
Further, assuming a separable solution gives Bessel’s e
tion for the radial dependence of both axial field comp
nents. This has either the trivial solution that the axial field
zero, or a solution in terms of Hankel functions@12# ~also
called Bessel functions of the third kind!, giving two inde-
pendent solutions, one withBz50 and the other withEz
50. The first gives what are usually referred to as transve
magnetic modes, labeled TMnm , and latter transverse elec
tric modes labeled TEnm . The integersn(>0) and m
(.0) are radial and azimuthal mode numbers, respectiv
The requirement that the solution does not diverge at
origin gives a solution in terms of the Bessel functionsJn

and their derivativesJn8 . For transverse magnetic mode
(Bz50),
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Êr5
g

kc
Jn8~kcr !cosn~u1u0!, ~8!

Êu52
g

kc

n

kcr
Jn~kcr !sinn~u1u0!, ~9!

Êz5 iJn~kcr !cosn~u1u0!, ~10!

B̂5
k

g
z3Ê, ~11!

and for transverse electric modes (Ez50),

Êr52
k

kc

n

kcr
Jn~kcr !sinn~u1u0!, ~12!

Êu52
k

kc
Jn8~kcr !cosn~u1u0!, ~13!

B̂'5
g

k
z3Ê, ~14!

B̂z5 iJn~kcr !cosn~u1u0!, ~15!

whereB' refers toBr andBu , andkc is given by

g25k22kc
2 , ~16!

wherek25v2m«. This is the generalization to complex va
ues of the dispersion relation@Eq. ~1!# given in Sec. II. The
imaginary part ofk gives the losses from the internal m
dium and the imaginary part ofkc gives the losses from the
guide wall. Apart from then50 modes, the form given her
is not unique; any combination of these forms with any v
ues ofA andu0 will also be a mode. The only combinatio
which cannot be written in the form given above is the a
dition of two of the forms given here, one with an imagina
amplitude, the other with a real amplitude and with differin
values ofu0. Of particular interest is the case in which th
magnitudes of the amplitudes are equal, and the value
nu0 differ by p/2. The forms given above can be thought
as linearly polarized modes, and this as a circularly polari
mode. We will adopt this notation and concentrate on th
two cases. All that remains is to determinekc from the
boundary conditions atr 5a that Br , Ez , and Eu are con-
tinuous. This requires us to make some assumptions a
the guide material. The simplest case is that of total refl
tion, i.e.,Br , Ez , andEu are zero at the wall. Though highl
idealized, this can be taken as an approximation of the c
in which the reflectivity is high, which is of relevance, as w
are interested in low loss propagation, and the experime
we wish to examine inferred high reflectivites. We will loo
at this solution in Sec. IV. About the only other case
interest which is analytically tractable is for a guide mater
which is also homogeneous, isotropic, and linear. We w
look at this for guide walls of infinite thickness in Sec. V.
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IV. LOSSLESS SOLUTION

The cutoff wave number can be written

kc5
u

a
, ~17!

where for the transverse magnetic modes TMnm u is given by
the roots of the equationJn(u)50, which we write asunm ,
and for the transverse electric modes TEnm by the roots of
the equationJn8(u)50, which we write asunm8 . These
values are tabulated in various books. The fundamental m
~lowest kc) is TE11 (u51.84); then comes TM01 (2.40),
TE21 (3.05), TM11 and TE01 (3.84), TE31 (4.20), TM21
(5.14), TE41 (5.32), etc.@2#. For u@1, approximate formu-
las can be found from the large argument form of the Bes
functions, giving

unm'~m1n/221/4!p, ~18!

unm8 'un21m . ~19!

In the large argument approximationunm8 5un21m , but this is
only true for n50. These formulas are only accurate for t
higherm values, and the highern is the higher the value ofm
has to be.

Assuming that« andm are real givesg real, and thus a
lossless solution. In this case the dispersion relation give
Eq. ~16! reduces to that given in Sec. II@Eq. ~1!#. We will
now examine this solution. In two dimensions we can o
readily illustrate the transverse fields, i.e., the magnetic fi
of the transverse magnetic modes and the electric field of
transverse electric modes. For a givenn they have the same
basic form, the difference being that the magnetic field lin
must form closed loops within the guide, whereas the elec
field lines can be cut by the guide wall, giving a surfa
charge. This is the basis of the differing cutoff wave nu
bers. Apart from this difference, you can change between
modes by swapping the electric and magnetic fields. Fon
50 the lines are concentric circles. Vector plots of the fie
for n51 and 2 are given in Figs. 1 and 2. A simple progre
sion in the field structure is seen, with each loop in the fi
splitting with increasingn. The intensity is given by

I 5AIF S n

kcr
D 2

Jn
2 sin2 n~u1u0!1J8n

2 cos2 n~u1u0!G ,
~20!

where AI5«uAu2vb/2kc
2 , and the argument of the Bess

functions (kcr ) is no longer explicitly stated. This can b
rewritten in the more convenient form:

I 5
AI

4
@Jn11

2 1Jn21
2 22Jn11Jn21 cos 2n~u1u0!#. ~21!

As mentioned in Sec. III, the only combination of the
forms which is of interest is a combination with real a
imaginary amplitudes, for which the intensities are simp
added. The circularly polarized case gives a rotationa
symmetric intensity, equivalent to taking theu-averaged val-
ues of the intensities given above. The functional form of
intensity is determined only by the value ofn. The value of
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m and the class of mode determines where the guide w
cuts it off. Figure 3 gives the intensity for the first sixn
50 modes. Contour plots of the intensity for the first twon
51 and 2, linearly polarized modes are given in Figs. 4 a
5. Only the intensity of then51 modes peaks on axis. Th
other modes have a ring of 2n equal peaks, with zero inten
sity on axis. The transverse electric modes have a seriesm
such rings, of succesively lower intensities, and then.0
transverse magnetic modesm11 rings. For transverse mag
netic modes the wall is always just beyond a peak in
intensity, and for transverse electric modes is at a minimu

We have given the intensities in terms of the peak int
sity. More often we know the average intensity, that is t
power divided bypa2, and would like to know the corre
sponding peak intensity of a mode. We write the ratio of t
peak intensity to the average intensity asf a . The peak inten-
sity depends only onn, as all modes of a givenn include the

FIG. 1. Vector plot of the transversen51 fields. The length of
the arrow is proportional to the magnitude of the field. Up to t
inner dotted circle gives the electric field of the TE11 mode, and the
outer dotted circle the magnetic field of the TM11 mode.

FIG. 2. As in Fig. 1 forn52. The inner dotted circle gives th
electric field of the TE21 mode, and the outer dotted circle the ma
netic field of the TM21 mode.
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7172 PRE 62J. R. DAVIES AND J. T. MENDONC¸ A
first, and highest, peak of the intensity. The large argum
form of the Bessel functions givesI a}1/u, so we write

f a5anu, ~22!

wherean is a number which, in the large argument appro
mation, depends only onn. Evaluatingf a based on the exac
expressions@13# for the n50 –4, linearly polarized modes
we find that this is accurate to about two significant figu
for all except them51 transverse electric modes, giving

a0,1, . . .'1.0, 0.80, 0.40, 0.36, 0.31, ~23!

exceptfor the TEn1 modes, where

a0,1, . . .'1.1, 1.1, 0.63, 0.57, 0.54; ~24!

this givesf a for n50 –4 and any value ofm. For then.1
circularly polarized modes the peak intensity is lower th
that of a corresponding linearly polarized mode with t

FIG. 3. Mode intensity as a fraction of the peak value for t
first six n50 modes.

FIG. 4. Mode intensity for the first twon51 modes as a frac
tion of the peak value. Contours are at intervals of 0.1. The in
dotted circle gives the TE11 mode, and the outer dotted circle th
TM11 mode.
nt

-

s

n

same average intensity. For then52 –4, circularly polarized
modes,an must be multiplied by 0.677, 0.587, and 0.55
respectively. Forn@1, this tends to 0.5.

In Sec. II, the fundamental properties of propagation
hollow waveguides were attributed to the fact that propa
tion is due to wave reflection between the guide walls. T
solution is in indeed a superposition of four compone
waves, traveling in opposite azimuthal and radial directio
The azimuthal components are separated by writing

cosn~u1u0!5
1

2
~ein(u1u0)1e2 in(u1u0)!, ~25!

sinn~u1u0!5
1

2i
~ein(u1u0)2e2 in(u1u0)!; ~26!

thus only then.0 modes have azimuthal components,
they have gradients in the azimuthal direction. The rad
components are obtained in an analagous manner, separ
the Bessel functions into Hankel functions of the first a
second kind,Hn

(1) andHn
(2) ,

Jn5
1

2
~Hn

(1)1Hn
(2)!, ~27!

Hn
(1),(2)5Jn6 iYn , ~28!

where the upper sign refers toHn
(1) , andYn are either Weber

functions, Neuman functions, or Bessel functions of the s
ond kind. They diverge at the origin. With the time depe
denceeivt, Hn

(1) represents a radially converging wave a
Hn

(2) a diverging wave. This is more obvious from the lar
argument form

Hn
(1),(2)~x!'A 2

px
e6 i „x2(n11/2)p/2…1OS 1

x3/2D , ~29!

giving waves with radial wave numbers7kc . We are inter-
ested in the total incident intensity at the wall,I w , for which

r

FIG. 5. As in Fig. 4 forn52. The inner dotted circle gives th
TE21 mode, and the outer dotted circle the TM21 mode.
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PRE 62 7173BASIC PHYSICS OF LASER PROPAGATION IN . . .
it is only necessary to consider theHn
(2) component, without

separating out the azimuthal components. This gives an
tensity

Iw5I zẑ1I r r̂ , ~30!

where, for the linearly polarized forms,

I z5
I

4
1

I ~Yn!

4
, ~31!

I r5
AI

4

kc

b
~Yn8Jn2YnJn8!cos2 n~u1u0!, ~32!

the intensityI and the factorAI are given by Eqs.~20! and
~21!, and I (Yn) signifies these equations in terms ofYn in-
stead ofJn . For the circularly polarized forms the intensi
is again given by taking theu-averaged values. Using th
large argument approximation at the wall (u@1) gives

I z'AI

1

2pu
cos2 n~u1u0!, I r'

kc

b
I z . ~33!

For kc!k the axial component dominates, as would be
pected for a wave travelling at a small angle to the axis. T
large argument approximation is not good for lowm values,
and is particularly poor for then.0 transverse electric
modes. So we plot the axial intensity at the wall@Eq. ~32!#
for then51 –4, linearly polarized, TEn1 modes in Fig. 6. For
then50 and circularly polarized modes the intensity is u
form, though for the circularly polarized modes the ener
flux at the wall has the same form: it is just rotating at t
laser angular frequency. The main error in the large ar
ment form is overestimating the contrast in intensity; for t
TE41 modes this has changed to the extent that the peak
the minimum given by the large argument approximation

We can see from these results that the mode with
highest group velocity, lowest effective angle of inciden

FIG. 6. Axial component of the incident intensity at the wall
a fraction of the peak mode intensity for the first four TEn1 modes.
The result from the large argument approximation for the T11

mode is given by the dashed line; only its amplitude changes for
other modes.
n-

-
e

y

-

at

e
,

and lowest number of reflections per unit length will be t
TE11 mode. However, in general, we would expect the TE01
mode to have the lowest losses, as it has only an azimu
electric field: it iss polarized with respect to the guide wal
All modes apart from then50 transverse electric mode
have a radial electric field at the wall, and for then.0
modes this varies withu. This follows from the simple ar-
guments of Sec. II, that when the intensity varies ove
surface there is not a unique angle of incidence nor polar
tion. Thus, forn.0 modes, we would expect absorption a
plasma formation at the wall to be asymmetrical, and
could then no longer treat the guide as a cylinder. This in
cates that the TE01 mode should be preferred for guidin
intense laser beams. We will now consider this in more de
for a homogeneous, isotropic, and linear guide medium.

V. WAVES INSIDE THE WALL

If we assume that the guide medium is also homogene
isotropic, and linear, then we can solve for the fields in
wall. In this case, we also have the boundary conditions
«Er ~or Dr), Bz /m, andBu /m ~or Hz andHu) are continu-
ous. This assumes that there is no additional surface ch
~for D) or current~for H) not accounted for by the comple
permittivity and permeability, i.e., that is not induced by t
fields. The solution is basically the same as that given in S
III, except that, as the origin is excluded, theYn part of the
Hankel functions need not cancel. If we assume that the w
is infinitely thick and that there is no wave coming in fro
infinity, then we obtain a solution in terms ofHn

(2), instead of
Jn, as inside the cylinder. Applying the boundary conditio
shows that there isno solution with n.0. The transverse
magnetic modes cannot satisfy the continuity ofEz , Eu , and
Br . The transverse electric modes cannot satisfy the co
nuity of Hz and Hu . This means that there is a transver
electric solution with a specified surface current, but no
surface charge. The physical relevance of this solution is
clear, and we will not consider it. This does not mean t
there does not exist a nonrotationally symmetric solution
Maxwell’s equations, just that there does not exist a solut
of the form given by Eqs.~5! and ~6!. In terms of wave
reflection between the guide walls the reason for this is
vious, because, as mentioned in Sec. II, we cannot defin
unique angle of incidence nor polarization when the intens
varies over a surface; thus the losses will vary withu, as we
predicted from the lossless results in Sec. IV. This me
that the modes would not maintain their shape as they pro
gated, which is assumed in Eqs.~5! and~6!. With the inclu-
sion of losses, the only natural modes in a cylinder are ro
tionally symmetric. We can obtain a solution for the
modes. For then50 transverse magnetic modes,kc is given
implicitly by

J0~kca!

H0
(2)~kcga!

2
1

n2

kcg

kc

J1~kca!

H1
(2)~kcga!

50, ~34!

and for then50 transverse electric modes by

J0~kca!

H0
(2)~kcga!

2
kcg

kc

J1~kca!

H1
(2)~kcga!

50, ~35!

e
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assuming thatH0
(2)(kcga) and H1

(2)(kcga) are not equal to
zero. Wheren25mg«g /m« is the complex refractive index
the subscriptg refers to the guide, andkcg is the value ofkc
in the guide, given by

kcg
2 5kc

21~n221!k2. ~36!

In general, Eqs.~34! and~35! have to be solved numerically
The case of total reflection at the wall, considered in Sec.
corresponds to the limit that the modulus of the refract
index tends to infinity, provided that the imaginary part is n
positive infinite. In this case, the first term of Eq.~34! and
the second term of Eq.~35! are dominant, and the Hanke
functions tend to zero, giving the results of Sec. IV~note that
J0852J1). For the transverse electric modes this only
quires thatkc!kcg , which is true for all situations of inter
est. For the transverse magnetic modes, however, it requ
nkc /kcg@1, and we havekc!kcg , so the lossless result
will only apply for very high refractive indices. Though w
cannot find a general, analytic solution, we can find an
proximate solution for low loss propagation.

VI. APPROXIMATE LOW LOSS SOLUTION

To obtain an approximate solution for low loss propag
tion, we start from the lossless solution of Sec. IV, and u
the simple loss model, given in Sec. II,I}RNz @Eq. ~4!#,
whereR is reflectivity andN the number of reflections pe
unit length. We assume that the reflectivity is a given fun
tion of angle of incidence and polarization, and that it
close to 1, which is more conveniently expressed asT!1,
where the transmissionT[12R. We obtain the angle o
incidence, polarization, and number of reflections per u
length from the lossless solution, by using the incident fie
at the wall. By comparing Eq.~4! with Eqs.~5! and ~6!, we
see that in terms ofR andN the loss terma is given by

a52
1

2
N ln R'

1

2
NT, ~37!

where we have used the approximationT!1 to give a to
first order inT. This will give s- andp-polarized loss terms
which we will label as and ap . The losses can be repre
sented in the physically more intuitive form of a loss leng
Lloss, which we define to be the distance for a 1/e fall in
intensity:

Lloss5
1

2a
. ~38!

In effect, we are using a ray tracing approach, treating
guide wall, point by point, as a plane surface, which requi
a@l. In using the lossless results, we are assuming that
valuesb andkc are not significantly changed by the losse
this requiresa2!kc

2 , which is also satisfied by the require
ment thata@l. A similar approach is used to obtain th
losses for low loss propagation in microwave applicatio
@2#. The starting point is also the lossless solution, which
used to calculate the surface currents instead of the inci
fields. The average energy dissipation is then calculated f
given conductivity, assuming that the surface impedenc
the same as that for a plane surface, which is analagou
,
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our use of the reflectivity for a plane surface. In addition
the assumptions we make, this also requires the guide to
homogeneous, isotropic, and linear medium, and thatn2 is
dominated by a large imaginary component. This is a s
cialized case of the approach given here, which in genera
not applicable to laser applications.

Given the reflectivity, all we need to do is to determin
w, N, and the polarization for each of the modes. For
n50 modes this is straightforward, as there are only com
nents in the radial and axial directions, and thus all the r
cross the axis. The angle of incidencew is given by sinw
5kc /k, the number of reflections per unit length isN
5(kc /b)/2a, the transverse magnetic modes arep polarized,
and the transverse electric modes ares polarized. Then.0
modes contain an azimuthal component, and so must inc
rays which do not cross the axis. To characterize a ray cr
ing the cylinder at an arbitrary position, we use the angle
incidencec of its transverse component to the tangent of
circle, where 0,c<p/2, being equal top/2 for a ray that
crosses the axis. It is given by the transverse fields at
wall, Fr and Fu , i.e., the magnetic field for the transvers
magnetic modes and the electric field for the transverse e
tric modes:

sin2c5
Fu

2

Fr
21Fu

2
. ~39!

The angle of incidence is then given by

sinw5
kc

k
sinc, ~40!

and the number of reflections per unit length by

N5
kc

b

1

2a sinc
. ~41!

The n.0 transverse magnetic modes are stillp polarized,
but the transverse electric modes now have ap as well as an
s-polarized component. The parameter sin2 c gives a mea-
sure of the degree ofs polarization of the transverse electr
modes; it is one if the electric field has only an azimuth
component, zero if it has only a radial component, and sc
as the intensity (Fr

21Fu
2 is proportional to the axial inten

sity!. So we write the loss term for the transverse elec
modes as

aTE5~sin2 c!as1~12sin2 c!ap . ~42!

Thus the problem is solved. However, these parameters
pend on phase andu, which means that the modes consist
rays crossing the cylinder at different positions. Indeed,
that is required of the rays which make up a given mode
that they have the same axial velocity. This clearly illustra
the fact that then.0 modes have components with differin
losses, and thus will distort as they propagate. Strictly spe
ing, however, they are no longer modes. Assuming that
losses are small everywhere, then the distortion over
tances less than the loss length will be small, and we
calculate an averaged loss term. There is a further comp
tion for then.0 modes, as at each point there are two ra
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incident on the wall, with oppositely directed azimuthal co
ponents. In general, the reflectivity of the two rays combin
is not expected to be the same as that for each ray indiv
ally. For example, at some points two rays withp-polarized
components interfere to give a purely azimuthal elec
field, i.e., ans-polarized wave, and at others to give a pure
p-polarized wave. However, in obtaining an averaged l
term, this problem disappears in the averaging. We take
phase andu-averaged values ofFr

2 and Fu
2 , to give a root

mean square value of sinc, weighted according to the inten
sity, which we will label f c . This gives the same resu
whether or not you separate out the azimuthal compon
and for both linearly and circularly polarized modes:

1

f c
2

511
n2

u2

Jn
2~u!1Yn

2~u!

J8n
2~u!1Y8n

2~u!
. ~43!

Using the large argument forms gives 1/f c
2'11n2/u2,

which, strictly speaking, is 1 to the order of the approxim
tion. However, comparison with the exact results shows
this is a reasonable approximation foru2@n2. This is in
reasonable agreement for all then51 modes, but forn52 it
already requiresm.3 to give agreement within 10%. Equa
tions ~39!–~42!, with f c in place of sinc, give an averaged
loss term for then.0 modes, and the correct result for th
n50 modes. As an example of this approach, we return
the case of a linear, homogeneous, and isotropic guide
dium. In this case, for a plane boundary, the reflectivity
given by what are often called the generalized Fresnel eq
tions @11#.

VII. LOSSES FROM FRESNEL’S EQUATIONS

Fresnel’s equations fors- and p-polarized transmission
are

Ts5
4n r8 sinw

un82u12n r8 sinw1sin2 w
, ~44!

Tp5
Ts~cos2 w1un82u!

un82usin2 w12n r8 cos2 w sinw1cos4 w
, ~45!

wheren825n22cos2 w, andn r8 is the real component ofn8.
n being the complex refractive index. The transmission
boths- andp-polarized waves is zero forw50 ~propagation
parallel to the surface! and identical forw5p/2 ~normal in-
cidence!, as there is no difference betweens andp polariza-
tion at normal incidence, between these values
p-polarized transmission is higher. Thes-polarized transmis-
sion increases steadily withw to a maximum atw5p/2. The
p-polarized transmission increases more rapidly to a pe
then falls. We requireT!1, which is always the case fo
un2u sufficiently high, forw sufficiently small, and ifn r8 van-
ishes, which occurs ifn2 is dominated by a, negative, re
component. We now consider two specific cases of th
equations; ideal dielectrics and conductors. We will furth
assume that«5«0 and thatm5mg5m0, where the subscrip
0 indicates the free space values.
-
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A. Ideal dielectrics

In this case the refractive index is real, with typical valu
in the range 1.4–2.1@2#; thus to haveT!1 we requirekc
!k, where kc is taken to be the value obtained from th
lossless solution. In this approximation thep-polarized loss
term is

aap'
n2

An221

kc
2

k2
, ~46!

where we have actually used (n221)kc
2!k2, rather than

simply kc!k, and thes-polarized loss term is

aas'
1

An221

kc
2

k2
. ~47!

In this approximation,f c in Eqs.~40! and~41! cancels in the
expressions fora, so only then.0 transverse electric mode
have components with differing losses, the maximum diff
ence being a factor ofn2. However, for the transverse mag
netic modes there is a problem with this approach, beca
as we saw in Sec. V, for low values of the refractive ind
the dispersion relation for then50 transverse magneti
modes@Eq. ~34!# differs significantly from the lossless cas
For (n221)kc

2!k2 it is the second term of Eq.~34! which
dominates, rather than the first term as in the lossless c
Thus we would expectkc to have approximately the sam
value as for the transverse electric modes. To check the
lution we have obtained here, we will now obtain an appro
mate low loss solution of Eqs.~34! and ~35!. Though they
only apply to then50 modes, we take them as a guide to t
behavior of then.0 modes. First we simplify the equation
For all situations of interestkcga is sufficiently high that we
can useH0

(2)/H1
(2)'2 i to a good approximation. Usingkc

2

!(n221)k2 gives

f n

kc

k
J0~kca!1 iJ1~kca!50, ~48!

where f n5n2/An221 for the transverse magnetic mod
and 1/An221 for the transverse electric modes. We ha
f nkc /k!1, so the second term is dominant; thus we see
solution of the formkc5k01k1, where k0 is given by
J1(k0a)50, i.e., the value ofkc for the transverse electric
modes in the lossless case, anduk1u!k0. Using a Taylor
expansion of the Bessel functions aboutk0, to first order in
k1, gives

f n

k01k1

k
1 iak150. ~49!

The imaginary part of this equation gives

k1r52 f n

k1i

ka
, ~50!

wherek15k1r1 ik1i . This shows that fora@l (ka@1) the
change inkc due to the losses, which are given byk1i , is
negligible. Combined with the real part, this gives
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k1i' f n

k0

ka
. ~51!

We want to obtaina, which is given by

a5
kcrkci

b
'

k0

k
k1i'

f n

a

k0
2

k2
, ~52!

which gives the same result as above, only for the transv
magnetic modeskc is now the same as for the transver
electric modes. The modes are not truly degenerate, ak1
differs. For then.0 transverse magnetic modes the situat
is not clear; the most obvious approach is to simply assu
that this result carries over, and we haveu5unm8 , as for the
n.0 transverse electric modes. Physically, the differenc
that in the lossless case the transverse magnetic field h
form closed loops within the guide, whereas with losse
extends into the guide wall. For good conductors and ov
dense plasmas the fields in the wall are restricted to a
depth, so the lossless result remains a good approxima
In this case losses result in energy deposition at the surf
In dielectrics energy loss is due to wave propagation thro
the guide wall, so the magnetic field extends throughout
guide wall, changingkc . For the transverse electric mode
the change between dielectrics and conductors is simply
a lower charge density is induced at the wall in dielectric

These terms will only apply provided that the intensity
low enough that the dielectric does not break down. This w
occur when the intensity in the wall exceeds the breakdo
threshold. The required intensity is given by the maximu
transmitted intensity. For the breakdown threshold there
numerous theoretical and experimental results, and we
not consider them here. We would like to know the pe
intensity in the waveguide at breakdown, so we will consid
the ratio between the peak mode intensity and the maxim
transmitted intensity, which we will labelf b . Using the large
argument approximation and assuming that the intensit
the wall is dominated by the axial component, we obtain
simple form

f b5
f n

f n

a

l
, ~53!

where f n for the linearly polarized modes is given by

f 0,1, . . .'3.3, 2.5, 1.3, 1.1, 1.0, ~54!

and for the circularly polarized modes (n.0) by

f 1,2, . . .'4.9, 1.7, 1.3, 1.1. ~55!

Comparison with the exact results shows that this is accu
for the n50 modes. For the transverse magnetic modes
accurate to around 10% forn51 modes, forn52 and 3
modes withm.1, and for n54 modes withm.2. The
TM21 values are 1.8 and 1.6 for linearly and circularly p
larized modes, respectively. For transverse electric mo
the variation in polarization complicates the situation, a
the validity depends on the refractive index, agreement be
better for lower values. Forn51.5, it is accurate to aroun
10% forn51 –4 modes withm.1. The TE11 values are 2.2
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and 3.3 and the TE21 values are 1.3 and 1.1 for linearly an
circularly polarized modes, respectively. These results ap
to single modes; higher intensities can be achieved with
breakdown by a combination of different modes. This calc
lation gives a significantly lower peak intensity at breakdo
than using themodeintensity at the wall@8#, which may go
to zero even though there is a significant incident intens
as the incident and reflected waves can cancel one anot

As an example, we will considera520 mm and l
51 mm for a glass waveguide with refractive indexn
51.5. We will consider TM01, TE01, and TE11 modes. For
the TM01 mode we obtainLloss50.53 cm, for the TE01
modeLloss51.2 cm, and for the TE11 modeLloss54 cm.
Then50 results are in excellent agreement with a numeri
solution of Eqs.~34! and ~35!. For typical values of the re-
fractive index the TE11 mode is the lowest loss mode in
dielectric, as it has the lowestkc . For comparison, the char
acteristic distance for the defocusing of an unguided wa
the Rayleigh length, for a beam with a Gaussian intens
profile, I}e2r 2/R2

, is pR2/l. Taking R5a/2 gives a Ray-
leigh length of 0.031 cm for this case. For the factorf b we
obtain 33 for the TM01 mode, 74 for the TE01 mode, 54 for
the linearly polarized TE11 mode, and 110 for the circularly
polarized form. Breakdown intensities up to;1014 W cm22

have been obtained for glass, depending on the pulse le
@14#; thus in this example peak mode intensities up
;1016 W cm22 would appear to be the limit. The only wa
to achieve high intensities in dielectric waveguides is to ha
a@l, which requires high laser power; this is their maj
drawback for most laser-plasma applications. For guiding
dielectric waveguides the circularly polarized TE11 mode is
preferred, having the highest group velocity, lowest loss
and highest breakdown threshold. It has an intensity pro
I}J0

21J2
2, which can be well fitted by the typical Gaussia

profile with R50.77a. However, as the TM11 mode in di-
electrics is expected to have virtually the same intensity p
file, it will be difficult to excite only this mode.

B. Conductors

In this case

n2512
vpg

2

v21vcol
2

2 i
vcolvpg

2

v~v21vcol
2 !

, ~56!

where v is the laser angular frequency,vpg is the guide
plasma frequency, andvcol is an effective collision fre-
quency. With the correct choice of parameters, this form
can fit a wide range of metal and plasma results, e.g.,
classical and ‘‘anomalous’’ skin effects@11#. In fact, most
reflectivity results have a dependence on angle of incide
similar to Fresnel’s equations@Eqs. ~44! and ~45!#, particu-
larly if you take into account that in most real situations y
have a mixture of polarizations; therefore the results can
fitted by choosing an appropriate refractive index. The phy
cal significance of such a fit may, however, be doubtful, b
it does mean that the applicability of these results is wi
than might be expected. Typically, we haveun2u@1, giving

aas'
n r

un2u

kc
2

k2
, ~57!
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where againf c cancels, and therefore the separate com
nents have similar losses. In general, thep-polarized term
cannot be significantly simplified. However, for the dispe
sion relation of then50 transverse magnetic modes@Eq.
~34!# to tend to the lossless result, we requirenkc@k, giving

aap'
n r

un2u

1

f c
2

, nkc@k. ~58!

For kc!k, asnkc@k must apply to the real and the imag
nary parts, this requirevcol@v. For nkc!k, in which case
we expectkc to be given by the transverse electric result,
obtain

ap'un2uas ,nkc!k. ~59!

These results can be verified for then50 modes following
the same procedure used in Sec. VII A, though the algeb
more involved. For many cases neither approximation
valid, and a numerical solution will be required for the tran
verse magnetic modes. These results show us that
s-polarized losses will be very low, much lower than in d
electrics, but that thep-polarized losses will be significantl
higher. This means that the lowest loss mode will, in gene
be the TE01 mode, and that then.0 modes will rapidly
distort, thep-polarized component being rapidly lost. Co
ducting waveguides show what is known as high loss d
crimination. Thus the TE01 mode is preferred. However,
has a hollow intensity profile~Fig. 3!, quite different from
the Gaussian profiles normally considered. A similar inte
sity profile has been generated@15#, with the intention of
generating a ponderomotive trap, and has a number of
sible applications. If the intention is to generate a hollo
profile, the expected modification of the intensity profile
propagation in a conducting waveguide could be used
this. Equation~56! shows that lower laser frequencies, whi
imply longer wavelengths, will give lower losses for a give
value ofa/l, due to the higher permittivity. Using a longe
wavelength would also make the construction of t
waveguides easier. This indicates that longer wavelen
should be preferred. However, shorter wavelengths have
advantage that, for a given laser power and value ofa/l,
higher intensities can be achieved.

As an example of Eq.~56! we will consider the classica
skin effect regime, principally so that we can make a co
parison with results obtained for microwaves, where

vcol5
vpg

2 «0

s
, ~60!

wheres is the conductivity. This should be valid for inciden
intensitiesI wl2!1016 W cm22mm2 @11#. Conductivities are
typically in the range 106–108V21 m21 and plasma fre-
quencies, at solid density, are typically in the range 1016–
1017 s21, giving collision frequencies from 1013 to
1017 s21. The laser angular frequency is 1.8831015/l s21,
where l is the laser wavelength in microns. This gives
considerable variation in the values of refractive index. F
long wavelengths, such as for microwaves, wherevcol@v,
we obtain
-

-
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aas'Av«0

2s

kc
2

bk
~61!

and

aap'Av«0

2s

k

b

1

f c
2

, ~62!

where we have not made use of the approximationb'k, so
that we can make a direct comparison with the result giv
by Elliot @2# for the transverse electric modes:

aaTE5Av«0

2s F kc
2

bk
1

n2k

b~u22n2!
G . ~63!

Using 1/f c
2'11n2/u2, with u2@n2 and kc

2!k2 we obtain
@Eq. ~42!#

aaTE'Av«0

2s F kc
2

bk
1

n2k

bu2G , ~64!

which for u2@n2 agrees with Eq.~63!. The two results are
identical for n50. Though the large argument form is n
explicitly used in the derivation of Eq.~63!, it is implicit in
the assumption that the wall can be treated as a plane sur
There is, however, still a slight inconsistency between th
two results. This arises from the assumption used in deriv
Eq. ~63! that the surface impedanceEu /Hz was given by the
value for a plane surface,Avm0/2s. Evaluating the surface
impedance, assuminga2!kc

2 , shows that this is only the
case foru2@n2b2/kc

2 , in which limit the two results agree
The physical reason for the breakdown of the model is
presence of ap-polarized term forn.0 @the second terms in
the brackets in Eqs.~63! and ~64!#, which would lead to a
distortion of then.0 modes.

To give a specific example we will consider an aluminu
waveguide, taking the reflectivity from the experimental r
sults of Milchberget al. @16#. They measured the reflectivit
of 400-fs, 0.308-mm, up to 7-mJ,s- and p-polarized laser
pulses, incident at 45 ° on to an aluminum target, at inten
ties between 1011 and 1015 W cm22. They then fitted the
data using Eqs.~56! and ~60!, the idea being to obtain the
conductivity as a function of temperature, which increas
with increasing laser intensity. This gave a conductiv
which varied by a factor of around 100, decreasing w
temperature to a minimum between 40 and 60 eV, then
creasing in a Spitzer-like fashion, as expected for a plas
The plasma frequency did not vary significantly, as alum
num already has three free electrons per atom at room t
perature. This shows that the behavior of conduct
waveguides can vary considerably with laser conditions,
prepulse, intensity, and pulse duration. As we have alre
mentioned, if the reflectivity dependsexplicitly on the inten-
sity, rather than there simply being a suitable reflectivity
the laser intensity used, as Milchberget al.assumed, then the
simple loss model breaks down. As an example of th
results we will consider two extreme cases:~1! room tem-
perature,s53.83107V21 m21, corresponding to an inci-
dent intensity less than 1011 W cm22, and ~2! minimum
conductivity s553105V21 m21, corresponding to an in-
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cident intensity;1014–1015 W cm22, both with vpg52.4
31016 s21. For l51 mm, case~1! givesn50.4542 i12.7
and case~2! givesn53.53–i4.10. Fora520 mm we have
nkc!k in both cases, for all lower order modes; thus E
~59! applies. For the TM01 mode we obtainLloss51.7 cm
for case~1! and 0.22 cm for case~2!. Numerical solution of
Eq. ~34! gives 1.9 and 0.27 cm for cases~1! and~2!, respec-
tively, with u being 4.25 and 3.96 respectively, compared
the predicted value of 3.83. For the TE01 mode we obtain
Lloss5380 cm for case~1! and 9.1 cm for case~2!. A nu-
merical solution of Eq.~35! gives 390 and 9.2 cm for case
~1! and~2!, respectively, withu being in excellent agreemen
with the predicted value. For the TE11 mode we obtain
Lloss5120 cm for case~1! and 12 cm for case~2!, so it is,
marginally, the lowest loss mode for case~2!. However, the
large difference between thes- andp-polarized losses would
be expected to lead to a significant change in the mode
file over this averaged loss distance; thep-polarized loss
term is roughly 162 times greater than thes-polarized value
for case~1!, and 29.3 times greater for case~2!. For glass we
obtained 0.53, 1.2, and 4.0 cm for the TM01, TE01, and TE11
modes, respectively. This shows that considerably lo
losses can be obtained in conducting waveguides than ca
achieved in dielectric waveguides, as well as higher losse
some cases. It also illustrates the high loss discrimina
and the large range of different values which can occur,
makes it difficult to make any precise predictions for co
ducting waveguides.

VIII. COMPARISON WITH THE RESULTS
OF MARCATILI AND SCHMELTZER

The work of Marcatili and Schmeltzer@10# has become
the standard reference work in the area of laser-plasma p
ics. As the results given here differ from their results, it
necessary to try and explain these differences. The m
differences are in the cutoff wave numberkc(ki in their no-
tation! and the presence of hybrid modes forn.0. In terms
of our notation, they giveu5un21m for all modes. This only
agrees with our results for then50 transverse electric
modes, and for then50 transverse magnetic modes wh
nkc!k. For n.0, it agrees approximately whenu@1 @Eq.
~19!#. For n.0, Ref. @10# gave only one class of mode, th
electric hybrid modes EHnm , with both axial field compo-
nents and mixeds- and p-polarized losses. In this case, w
found that there were no modes, as a solution of the fo
given by Eqs.~5! and ~6! cannot satisfy the boundary cond
tions; however, we took the lossless results as an approx
tion to the low loss case. Indeed, the fields they give for
hybrid modes cannot satisfy both the requirements for
continuity of the azimuthal and the axial electric fields at t
boundary. The value ofkc Ref. @10# gave only satisfies the
continuity of the axial component. The origin of the hybr
modes is made clear in the lossless limit, that the modulu
the refractive index tends to infinity, when the fields tend
those of the transverse electric modes. The value ofu given
in Ref. @10# is thus wrong; it should be the same as we gi
This is because the authors of Ref.@10# used the large argu
ment approximation in solving the dispersion relation,
which u85un21m . This leads to a significant error for th
fundamental mode; their fundamental mode is the E11
.
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mode withu52.40, compared tou51.84 for the TE11 mode.
Given the importance of this mode in many applications, t
is a crucial error. Another error in Ref.@10#’s results, which
appears in the lossless limit, is that there are non.0 trans-
verse magnetic modes. We did find that then.0 modes
would be distorted by the losses and that, fornkc!k, the real
part ofkc was approximately equal for both classes of mo
thus, approximately, there do exist ‘‘modes’’ with both axi
field components and combineds- and p-polarized losses.
As, strictly speaking, there are no modes withn.0, it is
possible to construct a variety of approximaten.0
‘‘modes.’’ Our approach has the advantage that it correc
reproduces the known lossless limit of the equations,
which case there do existn.0 modes. However, the hybrid
modes Marcatili and Schmeltzer gave are wrong: the fie
do not satisfy Maxwell’s equations. Only theinternal fields
of their n50 modes satisfy Maxwell’s equations to first o
der in kc /k, the order of their approximation. Furthermor
then50 transverse electric modes do not satisfy the requ
ment for continuity of the azimuthal electric field at th
boundary, for the given value ofkc . Obtainingkc from this
condition gives fields which do not satisfy Maxwell’s equ
tions. The loss terms given in Ref.@10# are the same as w
obtained using Fresnel’s equations, fornkc!k. The loss
term for the hybrid modes is what one would obtain for
combination of the transverse magnetic and electric mo
with f c51, which also arises from the use of the large
gument approximation. Thus we see that the results of R
@10# are clearly incorrect, but that fornkc!k and u2@n2,
with a@l, they are in general agreement with the results
obtained using Fresnel’s equations. This is to be expec
from Ref. @10#’s use of the large argument approximation

IX. COMPARISON WITH EXPERIMENTAL RESULTS

We will now analyze the experimental results we me
tioned in Sec. I@6–9# in the context of this model, in par
ticular those of Jackelet al. @6# and Borghesiet al. @7#. In all
the experiments the laser pulse had a, roughly, Gaussia
tensity profile centered on the axis of the cylinder. Thus
expectn51 modes with cutoff wave numbers less than t
laser wave number, that isu,2pa/l, to be excited. In each
case this gives a large number of possible modes, as
lowest value ofa/l used was 20. Of these modes, we exp
most energy to be in modes whose effective angle of in
dence falls within the cone angle of the laser beam. Thi
normally given in terms of an f number,f # , which can be
related to an effective value ofu by

u5
ka

2 f #
. ~65!

Thus we expect most energy to be in modes with valuesu
up to just above this value. In practice, due to the short pu
durations used, there is not a unique value ofk which will
further increase the spread in the modes. This will lead
pulse dispersion. The main points for comparison are
transmitted intensity profiles@6,7# and the results on break
down @6,8#, for which no real analysis was given. The lo
results were adequately described by the model used in t
papers of rays bouncing between the walls, because t
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were a large number of modes present and they did not
capillaries long enough for the losses to significantly red
this number. In Refs.@6,7,9# the model was used to infer a
average reflectivity, though Jackelet al. @6# also stated tha
using Fresnel’s equations gave a good match to the exp
mental results. In the cases where plasma was formed a
walls @6,7,9# the plasma conditions, and hence the reflec
ity, were not known, so a direct comparison was not p
sible, and the model could only be used to infer the aver
reflectivity. In this case the model will only be valid if th
plasma formed at the walls has a scale length much less
the radius of the waveguide. As Dorchieset al. @8# tried to
match Marcatili and Schmeltzer’s EH11 mode, and used the
loss term given for that mode, their model is equivalent
the model of Refs.@6,7# of a single, average, ray with the us
of Fresnel’s equations, as used by Jackelet al. @6#. This is
because they assumed that there was a single mode an
we have shown, the loss term given by Marcatili a
Schmeltzer is equivalent to using Fresnel’s equations for
reflectivity. The value ofu they tried to match was 2.40, a
u118 51.84 andu128 55.33 we expect most of the energy to b
distributed in the TE11, TM11, TE12, and TM12 modes. The
use of a single ray is only accurate for distances up
roughly the initial, average loss distance, as the differ
losses of the modes will lead to a fall in the overall loss te
with distance. This was observed by Jackelet al. @6# and
Stöckl and Tsakiris@9#; the inclusion of a continuous rang
of rays allowed Sto¨ckl and Tsakiris to reproduce their re
sults. The other experiments did not use sufficiently lo
capillaries to be able to see this within the experimental
rors. Thus the agreement of the results of Dorchieset al.
with the model of Marcatili and Schmeltzer is not suprisin
particularly considering that the lengths of the capillar
they used were comparable to the loss distances they
tained. The fact that the pulse propagated virtually u
changed is also to be expected, due both to the lengths o
capillaries used and the low loss discrimination of dielec
waveguides. As they were operating far from cutoff (kc
!k), no significant pulse dispersion is expected.

Jackelet al. @6# and Borghesiet al. @7# gave transmitted
intensity profiles at intensities where the capillary wall
ionized. In this case we expect a rapid distortion of the ini
intensity profile, which is clearly seen in all their results. T
profile given by Borghesiet al. for a/l520, which consists
of two lobes with a line of low intensity in the middle
though simple in form, does not look like any of the lossle
modes. However, it does have the symmetry ofn51, just
without the central peak in intensity, which, intuitively, on
might expect from the loss of thep-polarized part. The pro-
file for a/l550 shows a whole series of peaks, which
expected from the large number of high order modes wh
could be excited and the lower losses, but again does
have the distinct central peak of the lossless,n51 modes.
The profile given by Jackelet al., though it shares the sam
feature of an intensity minimum on axis, looks just like th
of the TE21 mode given in Fig. 5, which may well be th
same as the TM21 mode in this case. Jackelet al. gave anf
number for the output which gives an effectiveu, from Eq.
~65!, of 5.82, asu218 53.05 andu218 56.71, this would be con-
sistent with a strongm51 component. The presence ofn
52 modes indicates a departure from the expected sym
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try, which may be due to imperfections or misalignment
the laser beam or imperfections in the capillaries, such
curvature. Another possibility is that it arises from the io
ization of the capillary. For, initially,n51 modes this would
be expected to first occur at two opposite points on the w
which could lead to a change in symmetry fromn51 to 2.
Given thatn52 modes are present, them51 mode would
be expected to rapidly dominate due to its lower losses
the case of Borghesiet al. the capillary was ionized by the
laser prepulse, which may have created a slightly asymme
plasma waveguide~the possible plasma expansion was mu
less than the radius!, which could also, in part, account fo
the observed distortion of the intensity profile. Thus, thou
a direct quantitative comparison is not possible, the obser
distortion of the intensity profile can be qualitatively unde
stood in the context of our model.

Jackelet al. @6# obtained the breakdown energy for inte
nal radii a/l550 and 133. The exact values are not cle
but taking them to be given by the sharp turning points
their Fig. 4 gives 0.02 and 0.5 J, respectively. Everyth
else being equal, according to our model breakdown the
ergy scales asa3. Here we have a change ina3 of
(133/50)3'19 and a change in breakdown energy
0.5/0.02525, in reasonable agreement with the expec
scaling. A greater increase is actually expected due to
greater number of modes that could be excited in the lar
waveguide. The intensity at breakdown is also of the or
predicted by our model; an exact comparison is not poss
as we do not know exactly what modes were present. D
chieset al. @8# reported no breakdown for average intensit
up to;331014(a/l) W cm22. For their 120-fs pulse dura
tion the breakdown intensity taken from Ref.@14# was I b
;3.331013 W cm22, so this result can be expressed
;9.5(a/l)I b . This, according to our model, requires th
energy to be distributed between at least three modes, w
we expect to be the case. Significantly higher intensit
could not be achieved, as they predicted. Thus we conc
that the model is also consistent with the available results
dielectric breakdown.

X. CONCLUSIONS

Cylindrical waveguides, of whatever type, give a signi
cant improvement over unguided propagation in terms of
distance over which the intensity is maintained, the lo
length being considerably greater than the Rayleigh len
This would be of significant benefit in a number of lase
plasma applications, in particular to the laser wakefield
celerator, as the loss length could easily be made compar
to the dephasing length@1# by using a suitably large value o
a/l. However, the reduction in the group velocity@Eq. ~3!#
must be taken into account, giving a lower maximum ene
gain. This effect is also minimized by increasinga/l, for
a/l@(u/2p)(v/vp), wherevp is the plasma frequency o
the plasma inside the waveguide; the reduction in the gr
velocity from that of a plane wave is negligible. Thus, wi
the use of waveguides, it would not be necessary to wor
a regime of strong self-focusing, and higher group velocit
could be achieved, as in general tighter focusing impl
lower group velocities. The requirement for high values
a/l will, however, require more powerful lasers. X-ray la
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sers and harmonic generation are other areas which c
benefit from the extended interaction distance which cy
drical waveguides offer. They could also have applicatio
simply as a means of guiding intense laser beams; such a
has been suggested in fast ignition schemes, to guide
ignition pulse into a hohlraum or the capsule itself@7#. For
the laser parameters typically used in most of these app
tions, the guide wall will be ionized. It would also be diffi
cult to obtain a plasma-filled waveguide without ionizing t
wall. In this case there is a large difference between thes-
andp-polarized reflectivities, which will lead to a high los
discrimination between the modes and rapid distortion
nonrotationally symmetric field configurations. The lowe
loss mode is thus expected to be the TE01 mode, which also
does not suffer from distortion. It can achieve far low
losses than can be achieved in dielectric waveguides. H
ever, it has a hollow intensity profile~Fig. 3!, quite unlike
the Gaussian profiles usually considered, which will be d
torted, as found in experiments@6,7#. This may find applica-
tions in itself. The behavior of the waveguides in this case
also expected to vary considerably with the laser parame
In some cases such conducting waveguides can give lo
losses than dielectric waveguides for all modes. This is
case for sufficiently long wavelengths, which is why diele
tric waveguides are not considered for microwave appli
tions. Dielectric waveguides, however, have the advant
that there is a much smaller difference between thes- and
y,
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p-polarized reflectivities, so Gaussian profiles will not be
rapidly distorted. For dielectrics the lowest loss mode, in
cated by the lossless results, is the TE11 mode, which has the
lowest cutoff wave number, and hence has the highest gr
velocity. In its circularly polarized form it can be well fitte
by a Gaussian profile withR50.77a, and can achieve the
highest peak intensities without breakdown; in glass a p
intensity of 5.5(a/l) times the breakdown threshold can b
achieved. However, it will start to distort over distanc
greater than the loss length. With losses, there only e
rotationally symmetric modes. This is not a problem wh
the losses are very low, as with microwaves in conduct
waveguides, but, in general, it will be a problem in hig
intensity laser applications. Thus the generation and poss
applications of the TE01 mode merit investigation.

The results given here represent a first step in the b
understanding of laser-capillary experiments. To make
next step will require numerical modeling, e.g., with electr
magnetic particle in cell~PIC! codes, as is required in th
more straightforward case of plane targets@11#.
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